
Preparations
● Get the material

○ Install vol.py and rip.pl
■ https://github.com/volatilityfoundation/volatility
■ https://github.com/who1s/install_regripper 

○ Material.7z → Unpack it
○ Finalboss.7z → Save it to your disk

● Import OVA to your VMWare or VBox
● Power on the machine

○ Click “I copied it” if asked anything

$ 7z x Material.7z -p 
pystyyvetaa

$ git clone 
https://github.com/volatilityfoundation/volatility
$ cd volatility
$ sudo python2 setup.py install

https://github.com/volatilityfoundation/volatility
https://github.com/who1s/install_regripper
https://github.com/volatilityfoundation/volatility


Disclaimer
DO NOT run anything you’re able to extract from the memory. There’s a 
real malware and you can easily infect your own machine, if you don’t 

know what you’re doing.





@JuhoJauhiainen

/in/jauhiainen/

N/A

N/A

whois mika

@timiett1

/in/timo-miettinen-b743a896/

timiett1

Authors



Book recommendations



Syllabus
● Why memory forensics?
● Windows internals introduction
● Evidence collection
● How to get started w/ memory forensics
● … [6 labs + CTF]
● Profit





Why u forensicate memory?
What can you find from memory?

● Windows registry and log files
● Opened files
● Secrets
● Configuration files and data
● All running processes (including malware)
● Network artifacts

● Memory is the best place in analyzing 
malicious software activity

● Some evidence can’t be found elsewhere
○ “Fileless malware”
○ Malware can EITHER success in

■ Hiding
■ Executing



Evidence 
acquisition

Memory 
forensics

Analysis for 
selected files

Disk forensics Reporting

Digital Forensics process



Briefly:
● Virtual address space

○ Every process has their own
○ System and process address spaces 

reside here
● Physical address space

○ Processes have no clue what’s going on 
here

○ The “real” location in the memory
○ System only

Source: Wikipedia, 
https://en.wikipedia.org/wiki/Virtual_address_space#/media/File:Virtual_addre
ss_space_and_physical_address_space_relationship.svg

Virtual vs. physical address space

https://en.wikipedia.org/wiki/Virtual_address_space#/media/File:Virtual_address_space_and_physical_address_space_relationship.svg
https://en.wikipedia.org/wiki/Virtual_address_space#/media/File:Virtual_address_space_and_physical_address_space_relationship.svg


● Kernel Processor Control Region (KPCR) data structure that contains list 
of KDBG structures

● Kernel Debugger Block (KDBG) is a Windows debugging module
○ Loaded kernel modules, running processes → OS detection

● Each Windows process is represented by an executive process 
(EPROCESS) block
○ An EPROCESS block contains and points to a number of other related data structures 

● The EPROCESS block and most of its related data structures exist in 
system address space (systemland, kernel)

● Process Environment Block (PEB) being an exception
○ Exists in the process address space (userland), because it contains information that 

needs to be accessed by user-mode code
● Virtual Address Descriptors (VAD)

○ Memory manager maintains a set of VADs that describes the status of the process’s 
address space

Windows process internals



https://www.draw.io/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1szkEZTwRGODued9ecqP9O9uMT3US0IVp


Source: Mark E. Russinovich and David A. Solomon, Windows Internals, 5th Edition, 
https://www.microsoftpressstore.com/articles/article.aspx?p=2233328

https://www.microsoftpressstore.com/articles/article.aspx?p=2233328


Analysis overview (SANS)
1. Identify Rogue Processes
2. Analyze Process DLLs and Handles
3. Review Network Artifacts
4. Look for Evidence of Code Injection
5. Check for Signs of a Rootkit
6. Extract Processes, Drivers, and Objects



Collection

● Windows
○ WinPMEM (opensource)
○ FTK Imager (free to download)
○ Comae DumpIt, Magnet RAM Capture, Belkasoft Live RAM Capturer, Redline,

● Linux
○ LiME https://github.com/504ensicslabs/lime
○ Linux Memory Grabber https://github.com/halpomeranz/lmg/

● Virtual machines
○ VMWare snapshot, saved state (vmem, vmss, vmsn)
○ Vbox partial memory image (.sav)
○ Hyper-V memory image (.bin) and save state (.vsv) 

https://github.com/504ensicslabs/lime
https://github.com/halpomeranz/lmg/


strings & grep
Sooooo good together (+ awk, sed, cut) <3

ASCII strings
$ strings -a memory.dmp > strings_a.txt

Unicode strings
$ strings -e l memory.dmp > strings_u.txt

Grep all the things
$ grep -ihra keyword
$ grep -Ero '(http|https)://[^/"]+'



Toolink

● Open source <3

● Support
○ Win (x86/x64)

■ XP/2003, Vista, 2008/2008R2, 7, 8, 
2012, 10, 2016

○ Linux 2.6.11 – 4.2.3 (x86/x64)
■ OpenSuSE, Ubuntu, Debian, 

CentOS, Fedora, Mandriva
○ Mac OS X 10.5+ (x86/x64)
○ FreeBSD (!!!!)

● https://github.com/volatilityfoundation/v
olatility

● OS version detection: Kernel Debugger Block

● Open source <3

● Support
○ Win (x86/x64)

■ XP, 7, 8, 10
○ Linux 2.6.24+ (x86/x64)
○ Mac OS X 10.7-10.12.X (x64)

● https://github.com/google/rekall

● OS version detection: Microsoft PDB files

https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
https://github.com/google/rekall


Volatility - basics
$ vol.py –f [image] --profile=[PROFILE] [plugin] 
● Esimerkiksi

○ $ vol.py –f MEMDUMP.RAW --profile=Win10x86_10586 pslist

Using local variables:

$ export VOLATILITY_LOCATION=file:///path/to/memory.img

$ export VOLATILITY_PROFILE=Win7SP1x64

$ vol.py pslist



Volatility - basics
$ vol.py --help 
$ vol.py --info
$ vol.py [plugin] --help

$ vol.py imageinfo

$ vol.py kdbgscan



1. Identify Rogue Processes
● What to look for?

○ Processes with odd parent processes
■ Example: Word.exe running PowerShell.exe

○ Image of the process is in odd location
■ Example: Usually there’s nothing good under C:\Users\Public

○ Process has been executed with odd privileges or accounts
■ Example: SYSTEM is running PowerShell.exe

○ Start time of the process doesn’t add up
○ Process name is typosquattered

■ Example: lsaas.exe, cssrs.exe

● Only process relations can tell us a lot
○ What was the attack vector? Did the malware require actions from user?



1. Identify Rogue Processes
● How to investigate with Volatility?

○ $ vol.py pslist
■ Process list

○ $ vol.py psscan
■ Scans the memory image and tries to find EPROCESS blocks
■ Should find some already exited processes

○ $ vol.py pstree
■ Process tree
■ -v stands for verbose and might help in some cases ;---)



LAB #1



LAB #1
1. Detect correct profile for memory dump
2. When was the memory dump taken?
3. Find and list suspicious processes

git clone https://github.com/volatilityfoundation/volatility.git

cd volatility

python2 setup.py install

vol.py …

https://github.com/volatilityfoundation/volatility.git


LAB #1
1. Detect correct profile for memory dump

a. kdbgscan, imageinfo
b. Ensure the profile is correct with psscan and netscan

2. Find and list suspicious processes
a. pslist, psscan, pstree



LAB #1 answers
1. Win10x64_18362
2. 2020-02-13 08:25:53
3. TuqKirkgeTwYpj, iexplore.exe, caIc.exe.exe, WmiPrvSE.exe



2. Analyze Process DLLs and Handles
● Let’s look the handle table
● Loaded DLL files

○ Can tell some characteristics of the malware
○ Are they all legit? Any typoed names like User32.dIl
○ Where those files have been loaded from?

● What privileges the process has and which account is running the 
process?



2. Analyze Process DLLs and Handles

● How to investigate with Volatility?

○ $ vol.py dlllist

■ Lists all loaded DLL-files per process

○ $ vol.py getsids

■ Shows SIDs (Security Identifier) for each process

■ https://support.microsoft.com/en-us/help/243330/well-known-security-identifie
rs-in-windows-operating-systems

○ $ vol.py handles

https://support.microsoft.com/en-us/help/243330/well-known-security-identifiers-in-windows-operating-systems
https://support.microsoft.com/en-us/help/243330/well-known-security-identifiers-in-windows-operating-systems


LAB #2



LAB #2
1. Who is running the processes we identified suspicious?
2. What privileges the user has?



LAB #2 answers
1. Dustin Henderson
2. User belongs to Administrators group



3. Review Network Artifacts

● To identify processes with suspicious network connections

● To identify command & control connections, data exfiltration, 
uncommon management connections etc.

● To collect and identify IOCs

○ IP addresses

○ Known ports



3. Review Network Artifacts

● How to investigate with Volatility?

○ $ vol.py netscan

■ Connections and sockets (Vista onwards)

○ $ vol.py connscan

■ TCP connections (Win 7 only)



LAB #3
+ short break



LAB #3
1. What is IP address of the host we are analyzing? 
2. Can you spot suspicious network connections?



LAB #3 answers
1. 192.168.87.176 
2. Not w/ netscan



4. Look for Evidence of Code Injection

● The attacker may want to write a malicious code into memory of a 
process, for example to open reverse shell or to ensure their access

○ Motivation may be to evade antivirus software

● Look for running processes with writable memory 
(PAGE_EXECUTE_READWRITE)

● Might be some times be simple as searching for magic byte of PE files

○ MZ



4. Look for Evidence of Code Injection

● How to investigate with Volatility?

○ $ vol.py malfind

■ Scans processes and tries to find memory sections with ERW permissions

■ Can be used to dump found memory sections

○ $ vol.py ldrmodules

○ $ vol.py hollowfind



LAB #4



LAB #4
Check the memory if there’s signs of code injection

1. Which process has been injected?
2. Can you figure out what the attacker might have done?



LAB #4 answers
1. Explorer.exe (5008)
2. Most likely migration from process 7964



5. Check for Signs of a Rootkit

● Malware designed to enable access to a system as well as to hide itself 
from the user and other applications

● There are several ways to hide



5. Check for Signs of a Rootkit

● How to investigate with Volatility?

○ $ vol.py psxview

■ Shows a crossview where it is easy to detect hidden processes

○ $ vol.py modscan

○ $ vol.py apihooks

○ $ vol.py ssdt

○ $ vol.py driverirp

○ $ vol.py idt



● Basically you dump from the memory processes, files, Windows 
registry hives etc, that were identified to be suspicious in the previous 
phases of the investigation

● When analysing a piece of malware, you may need to do for example

○ Signature scanning (YARA, AV signatures)

○ Static analysis

○ Hybrid analysis

○ Reverse engineering

6. Extract Processes, Drivers, and Objects



● How to investigate with Volatility?

○ $ vol.py dlldump

■ Dumps all DLL files of certain process

○ $ vol.py moddump

○ $ vol.py procdump

■ Dumps the process image

○ $ vol.py memdump

■ Dumps memory section as a separate 
dump

○ $ vol.py filescan

■ Finds all files from the memory

○ $ vol.py dumpregistry

■ Dumps all registry files 
(NTUSER.DAT, SYSTEM, SAM etc.)

○ $ vol.py dumpfiles

■ Dumps file from given location

○ $ vol.py svcscan

○ $ vol.py cmdscan

○ $ vol.py consoles

6. Extract Processes, Drivers, and Objects



LAB #5



LAB #5
1. Extract all registry hives from memory
2. Check if commands run in cmd.exe can be retrieved from memory
3. Can you extract emails from memory? Who send it?
4. Check if you can extract the malicious document or process



LAB #5 answers
1. $ vol.py -f memdump.mem --profile=Win10x64_18362 dumpregistry 

-D registry
2. Not with consoles or cmdscan plugins → strings
3. strings
4. Process extracted (Win.Trojan.MSShellcode-7), document can’t be 

extracted



● Registry hives
○ HKEY_CLASSES_ROOT (HKCR) 

○ HKEY_CURRENT_USER (HKCU)

○ HKEY_LOCAL_MACHINE (HKLM) 

○ HKEY_USERS (HKU) 

○ HKEY_CURRENT_CONFIG (HCU) 

● Every registry hive has keys and values where computer configuration 
has been saved to

○ OS settings

○ User settings

○ Software configuration

Windows registry



● SYSTEM, SAM, SECURITY, SOFTWARE…
○ %SystemRoot%\System32\config 

● NTUSER.DAT
○ C:\Users\%USERNAME%\NTUSER.dat (Vista/7/8/10) 

○ C:\Documents and settings\%USERNAME%\NTUSER.dat (XP) 

● UsrClass.DAT
○ %USERPROFILE%\AppData\Local\Microsoft\Windows\Usrclass.dat

Where the hives are stored to?



RegRipper

● https://github.com/keydet89/RegRipper2.
8

● OpenSource <3

● CLI and GUI versions

○ Works on both, *nix and Windows

● Install on Linux: 
https://raw.githubusercontent.com/who1s/
install_regripper/master/install.sh

Registry Explorer/RECmd

● https://ericzimmerman.github.io/#!index.md

● Eric Zimmerman tools
○ Check them out, lot of other cool stuff as well

○ Windows only :(

Tools for analysis

https://github.com/keydet89/RegRipper2.8
https://github.com/keydet89/RegRipper2.8
https://raw.githubusercontent.com/who1s/install_regripper/master/install.sh
https://raw.githubusercontent.com/who1s/install_regripper/master/install.sh
https://ericzimmerman.github.io/#!index.md


RegRipper 101
Syntax is easy:
$ rip.pl -r <registryfile> -p <plugin>

How to list all plugins:
$ rip.pl -c -l

Pro-tip: grep <3
$ rip.pl -c -l | grep -i system
$ rip.pl -c -l | grep -i software
$ rip.pl -c -l | grep -i ntuser.dat



LAB #6



LAB #6
1. How many times Dustin has signed on?
2. What is hostname of the system?
3. What has Dustin ran on Windows with the “run” command (win+r) ?



LAB #6 answers
1. $ rip.pl -r registry.0xffffbb02f1b77000.SAM.reg -p samparse

Answer: 5
2. $ rip.pl -r registry.0xffffbb02ee40d000.SYSTEM.reg -p compname

Answer: DESKTOP-2446B53
3. $ rip.pl -r registry.0xffffbb02f36f2000.ntuserdat.reg -p runmru

Answer: inetcpl.cpl, calc and explore



Please give us feedback at

https://forms.gle/haJpZoNcXEibkmta
6

https://forms.gle/haJpZoNcXEibkmta6
https://forms.gle/haJpZoNcXEibkmta6




Memory forensics 101 - Capture the Flag
● No need to attack anything, everything you need is in the memory 

image
● Multiple levels, certain amount of percents required to unlock next 

level
● No hints available… ¯\_(ツ)_/¯
● Only three attempts per question (no bruteforcing)
● UTC or GTFO
● Wrong answer does not give you penalty points
● If you think you got the right answer but the system says it’s wronk, 

raise your hand and we’ll check if we screwed up [which is btw highly 
unlikely]



THE FINAL BOSS
Platform:
https://ctf.dfir.fi

Token:
whois can give one if requested :--)

Memory image:
https://files.dfir.fi/mf101/Finalboss.7z 

7z password:
hunter2020

Top-3 at Disobey2020:
1. Petteri
2. Ade
3. Kettusec

https://ctf.dfir.fi
https://files.dfir.fi/mf101/Finalboss.7z

